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INTRODUCTION

In this paper we consider random dynamical systems (RDS) generated by
small, random, diffeomorphism-type perturbations of an Axiom A basic set
of a deterministic diffeomorphism. We are concerned with the dynamical
properties of such an RDS near the basic set. Each individual realization
of the RDS is a time-dependent perturbation of the basic set. We first
discuss the structural stability of a hyperbolic set with respect to such time-
dependent perturbations. Using the structural stability results and the
Markov partition method, we can give a symbolic representation of the
RDS described above when the hyperbolic set is an Axiom A basic set (i.e.,
a locally maximal hyperbolic set which is transitive). This enables us to
apply the thermodynamic formalism of random subshifts of finite type
developed by Bogenschutz and Gundlach(7) and Gundlach(10) to the RDS,
obtaining existence and uniqueness of equilibrium states for some suitable
functions. This can be regarded as a partial version for the RDS described
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In this paper we study small, random, diffeomorphism-type perturbations of an
Axiom A basic set. By means of the structural stability of such a basic set with
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above of the program of applying statistical mechanics to diffeomorphisms
presented by Bowen(8) for the deterministic case. For the original work on
this program we refer the reader to Sinai(23) (for Anosov diffeomorphisms)
and to Ruelle(19,20) (for Axiom A attractors and for the formalism of equi-
librium states). See also the references cited in ref. 8 for other earlier contri-
butions to this subject.

In what follows we give some related definitions and a more precise
formulation of our setup. Let M be a Riemannian manifold without bound-
ary, 0 an open subset of M with compact closure, and f: O -> M a Cr

(r^ 1) diffeomorphism to the image.
Let A0cO be a compact set which is f-invariant, i.e., fA0 — A0. It is

said to be hyperbolic if there is a continuous Tf-invariant splitting
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and let it have the product topology. For each a>eQ, we write
co = (..., g - 1 ( u > ) , g0(co), g^ca),...) to express the sequence of maps corre-
sponding to o> and let

and if there are two constants 0 < A0 < 1 and C > 0 such that for all n ̂  0

Via a change of Riemannian metric we may—and will—always assume that
C= 1. If A0 is hyperbolic and moreover there exists a neighborhood U of
A0 such that DiT^-co f nU = A0, then it is called a locally maximal hyper-
bolic set (LMHS) of f. An Axiom A basic set of f is defined to be an LMHS
of f on which f is topologically transitive (i.e.,f has a dense orbit).

By Cr(O, M) (r^ 1) we denote the set of all Cr maps from 0 to M
equipped with the compact-open topology, which makes Cr(O, M) a
Polish space. Let Embr(O,M) be the Borel subset of Cr(O, M) whose
elements are diffeomorphisms from O to the images (i.e., embeddings). By
*(/) we will always denote an open neighborhood of f in Emb^O, M)
and, when it is given, we put



defined wherever they make sense. Denote by r the left shift operator on Q.
When Q is given, we will assume that P is a Borel probability distribution
on Q which is invariant and ergodic with respect to T. In the rest of this
paper, we will denote by Sf(P) the RDS generated by g"m, neZ,a>eQ, with
u> being distributed according to P. Here we refer the reader to Arnold(1)

for a general theory of RDSs, Clearly, each a> e Q can be viewed as a time-
dependent perturbation of / In this paper we are concerned with the
dynamical properties of such perturbations near a hyperbolic set of f when
the neighborhood U ( f ) is sufficiently small.

Remark. Let O' be an open subset of O with O' c O. If one takes
"#(/) as an open neighborhood of / in Cr(O, M) and if it is sufficiently
small, then g\0-: O' -» g(O') is a difleomorphism for any g e W ( f ) and one
can define g"m wherever they make sense in O'. With this modification of the
definition ofg^, all results given in this paper hold true if one takes O' as
an open neighborhood of an Axiom A basic set of f and takes <%(f) as a
corresponding neighborhood of f in Cr(O, M).

1. STRUCTURAL STABILITY OF HYPERBOLIC SETS

In this section we give some results on the structural stability of hyper-
bolic sets with respect to time-dependent perturbations (see Ruelle(22) for
earlier discussion on this topic). In this section, except when indicated
otherwise, we always assume r = 1 and so U(f) will be taken to be an open
neighborhood of f in Embl(O, M), and we always assume that A0 is a
hyperbolic set of f.

Theorem 1.1. There exist a number £0>0 and an open neighbor-
hood U(f) of f in Emb1(O, M) such that the following hold true:

(1) For each to e Q and any x e A0 there exists a unique point xm e O
such that g^Xo, is well defined and
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for all n e Z.
(2) For any given 0 < £ < e0 one can shrink U ( f ) given above so that

(1) holds true with e0 being replaced with e.

(3) Let u>eQ. Define Aco= {xm:xeA0} and

Then Am is compact and hm is a homeomorphism for all we Q. Moreover,
the family of maps {hm}mea has the following properties:



(i) g0(ca)A(0 = Am,, /»„,<>/= £oM°^ for all coeQ.
(ii) { h w } w,ea is equi-continuous in the sense that for any given e' > 0

one can find 8 > 0 such that d(x, y)<S implies d (h w x , h w y ) < E' for any x,
yeA0 and any coeQ. So is the family { h - 1 } ( o e f l in an analogous sense.

(iii) The map H:&-> C°(A0, M), u)\-*h(a is continuous.

Proof. (1 ) , (2), and the first part of (3) can be proved by standard
arguments in structural stability theory of hyperbolic dynamical systems
and hence their proofs are omitted here. (3)(i) is a natural corollary of (1) .
(3)(iii) follows from (1) and (3)(ii) by the Arzela-Ascoli Lemma. Finally,
(3)(ii) follows from Lemma 1.2, which is given just below and which will
be also useful for later arguments. |

Lemma 1.2. Let A0 be as given above. Then one can find a
neighborhood U0 of A0, a neighborhood U(f) of f in Emb'(O, M), and
numbers p0>0, C0>0, <x0e(0, 1) such that the following holds true:
If < B e f l 0 : = ri-«W), x, yeU0, gn

mx, g»ay are well defined, g»mx,
g"mye I/,,, and d(g^x, g"My)^p0 for ne [ -N, TV], then d(x, y) ^ C0a^.

Proof. This result is an easy consequence of persistence of the hyper-
bolic structure of A0 under small perturbations. It can be proved as follows.
Take a neighborhood U0 of A0 and a neighborhood U(f) of f in
Emb'(O, M) which have the following properties:

(i) There exists an extension of T'A(M' = Es©E" to a continuous
splitting TUf>M = El@E2 and there is a number C>0 such that for any
Z^^ + ̂ eE^E2 one has
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(ii) There exist positive numbers p0, a0, and e0 with 20<a0< 1 (X0

is the hyperbolic number of A0) and 0<£0<min{|(l — a0), 2(^0"'^ ^)}
such that the following hold true: If xe U0, ge^f0(f), and gxe U0, then

is well defined and, writing

we can express Gg, x in the following way:



where the linear maps Ag<x: Ex->El
g(x), B g , X: E2

X^ E2
g(x) satisfy \A g , x \ ^a 0 ,

B~x\^a0 and where R g , x ( . ) is a Lipschitz map whose Lipschitz constant
with respect to ||.||0 is not bigger than e0; moreover, the map

822/90/1-2-31
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is also well defined and has similar properties.
Now, if « e Q0 and x, yeU0 are as given in the formulation of the

lemma, putting exp~ly = £ = £l + £2e£' ®E2 and assuming without loss
of generality |£2| ^ |£1 , then we can easily see that

which implies

Taking C0 = 2Cp0 and oc0 = (a0 ' — e0) ', we complete the proof. |

The next result extends Nitecki's result (ref. 16, Proposition 3) on C1

upper semistability of neighborhoods of hyperbolic sets to the case of time-
dependent perturbations. The proof goes along the same line as that of
ref. 16, Proposition 3, and will be omitted here. This result will be useful in
Section 3.3, where we will deal with the ergodic theory of random pertur-
bations of hyperbolic attractors.

Proposition 1.3. There exists a neighborhood V0 of A0 and for
any given £>0 one can find a neighborhood U(f) of f in Emb1(O, M)
such that there exists a family of continuous maps {Hm: V0~^V(a: =
^o)(^o)}«)en which makes the following diagram commutative:

and satisfies d(Hm, id) < e for each (oeQ.

Remark 1.4. Let E and U(f) be as given in Proposition 1.3. If
£^£Q (EO is as given in Theorem 1.1) and U(f) also satisfies Theorem 1.1
(2), then clearly hw = Hw \A o for all u>eQ.



472 Liu

and define

Let EA be the pullback of TM by means of the projection p2: A -> M,
(co,x)\-*x. Define

The next proposition is a result describing the stability of the hyper-
bolic splitting of A0 with respect to time-dependent perturbations. Let
{A(0}coe(i be as introduced in Theorem 1.1. Put

where y( •, •) denotes the angle between the two associated spaces.

Proposition 1.5. For any given A e ( / I 0 , 1) and ye(0 , y0) one can
take U(f) small enough so that the following hold true:

(1) There is a continuous splitting EA = E"A © E"A such that for each
(co, x)eA

and

(2) y(Es
(o>tX),E»m<x)}^y for all (oi,x)eA.

(3) With A and y given above, if f is of class C2, one can find a
neighborhood U(f) of f in Emb2(0, M) such that the splitting ES

A®E"A is
equi-Holder continuous in the following sense: There exist constants C>0
and #>0 [depending only on (/I, y, U(f))] such that

for all x, ye AM and any u> e Q.

Proof. The proof of (1) and (2) is a standard argument (see, for
instance, the proof of Liu and Qian ref. 13, Proposition VII.2.1, with a
slight modification). The proof of (3) is the same as that of ref. 13,
Proposition VII.2.4. |



We end this section with a result which is irrelevant to the later
arguments. It describes the stability of a hyperbolic set with respect to
C°-small time-dependent perturbations. As before, let A0 be a hyperbolic
set of f eEmbl(O, M). Define H°(0, M) = {g: O-> M, g is a homeo-
morphism from O to the image} and endow it with the C° compact-open
topology.

Theorem 1.6. For any given e>0, there exists a neighborhood
U(f) of f in H°(O,M) such that there exist a family of compact sets
{A'dcoEa [& = r[-™'%(f)] and a family of surjective continuous maps
{h'(0:A'lo^A0}faea which satisfy d(h'OJ,\d)<£, g0(ca) A'lo = A'rta and make
the following diagram commutative:

for each coeQ.

The proof of this theorem is almost the same as that of Nitecki ref. 16,
Proposition 1.

2. EQUILIBRIUM STATES OF GENERAL EQUI-HOLDER
CONTINUOUS FUNCTIONS

2.1. Basic Strategy and Basic Notions

In this section we consider equilibrium states of general equi-Holder
continuous functions for random perturbations of Axiom A basic sets as
described at the beginning of the paper. We will assume r = 1 throughout
this section. Let A0 be an Axiom A basic set of f, and let U(f) and
A = Umefl {w} XAOJ be as given in Theorem 1.1. Write

Random Perturbations of Axiom A Basic Sets 473

It is a bundle RDS over (Q, @(Q), P,T) with G: A -> A being the corres-
ponding skew-product transformation, where 38(Q) is the Borel er-algebra
of Q. (See Bogenschutz and Gundlach(7) or Bogenschutz(6) for a general
theory of bundle RDSs.) Our basic strategy is as follows. By means of a
Markov partition of A0 and the family of homeomorphisms {hm}mea we
will obtain a simple symbolic representation of the bundle RDS (3. This
will allow us to apply the thermodynamic formalism for random subshifts



of finite type, developed in Bogenschutz and Gundlach(7) and Gundlach,(10)

to ^, obtaining existence and uniqueness of equilibrium states of G for
some suitable functions cp: A -> R.

Before going to our main result of this section, we first review briefly
in this subsection the notions of pressure and equilibrium states for the
bundle RDS G. In what follows we assume that the d-algebra on Q is the
completion of 38(Q) with respect to P, written $(Q). Writing X= O and
following ref. 7, we denote by L\(Q, C(X}} the collection of all families
(p= {(pa)eC(Alo)}msa which are such that (at, x)\-^-(pto(x) is measurable
on A and \\<p\\ :=|sup^.e/1 \(pm(x}\ dP(a>) < +00. With respect to the norm
Ml, L\(Q, C(X)) is a Banach space.(7)

Let e > 0, co e Q, and n ̂  1. A set Fc Am is called (u>, n, ^-separated if
max{af(^x, gk

my): 0</ :^n — 1} >e for any x, yeF with x ¥ = y . Given
q> e L\(Q, C(X)), we define for n ^ 1
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and

Then we call

the topological pressure of q> with respect to CS.
Here we claim that, though it is not yet clear whether the topological

pressure can be defined equivalently by using liminf instead of limsup
for a general continuous compact bundle RDS (see Gundlach00' and
Meyer(15)), for our present bundle RDS G we have

for each q>eLl
A(Q, C(X)). Indeed, one can view f: A0->A0 as a special

RDS J*;, over (Q, H(Q), P, i) and 0 is conjugate to J^ by means of
{h w } w e Q - Thus for every cpeL^Q, C(X)) one has
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where \fj — {^m = < p m
c ' h < ^ w e Q . Along the line of Walters (ref. 24, Chap. 9),

one can prove that

Since {hm}mea and { h - 1 } w e Q are equicontinuous, for any given £>0 one
can find 8e > 0 such that 6e -* 0 when E -»0 and for each a>E&, x, yeAw

with d(x, y)^8e implies d(hm ',v, h~ly)^£- It is easy to see that

for all coef2, n ^ l , and e>0. This together with (2.1) proves what we
claimed above. This fact will be useful in proving Proposition 3.1.

The variational principle(10) ensures that for (peLl
A(Q, C(X)) one has

where M ( A , &) denotes the set of ^-invariant measures (i.e., Borel prob-
ability measures on A, which is G-invariant and whose projection on Q
is P), J (p d/u = J <pm(x] d[i((o, x), and h^CS) denotes the entropy of (# , / / )
(see refs. 5 and 6 for a detailed treatment of the entropy theory of bundle
RDSs). Actually, by the ergodic decomposition theorem,(61) (2.2) can be
written as

where Jfe(A, CS] denotes the set of ergodic (with respect to G) elements of
,//(/!, #). If fi 6 J((A, fS] satisfies

then we call n an equilibrium state of (p with respect to <£

2.2. Thermodynamic Formalism of Subshifts of Finite Type
with Random Potentials

If A = ( A i j ) is an n0 x n0 matrix with each entry being 0 or 1, let



We will always assume that each ke{1 , . . . ,n 0 } can occur as a0 for some
ae£A. Then the shift operator a:ZA-*ZA is called a subshift of finite
type.

In this subsection we present some facts from the thermodynamic
formalism for such a deterministic subshift operator a: LA —> ZA with ZA

having random potentials modeled over (Q, <$(Q}^ P, T). Here we refer the
reader to refs. 7 and 10 for a theory of the thermodynamic formalism of
general random subshifts of finite type; our present setup is a special situa-
tion of that general theory. By Ll(Q, C(EA)) we denote the collection of all
families \l> = {i/rme C(£A)},aeii which are such that (co, aji-n/^a) is
measurable and ||i/r|| : = Jsupg e r |iAm(a)| dP(at) < +00. So by a function
i j / e L l ( Q , C(EA)} we mean an integrable random potential of ZA. For
\ji e L\Q, C(ZA)), the pressure na(\l/) of fy with respect to a can be defined
in a way similar to the definition of n &((/>) given in the previous subsection.
(See ref. 10 for various equivalent definitions of pressure for general
random subshifts of finite type.)

We now apply the general theory developed in refs. 7 and 10 to our
present situation to obtain some results concerning equilibrium states of
random potentials for the shift a: LA -»EA . For a, b e LA, we write a ~ b
if ai — bi for all i with | i |<n. A function \ j / e L l ( Q , C ( Z A ) ) is called equi-
Hblder continuous if there exist C>0 and < x e ( 0 , 1) such that for P-a.e. w
one has

i.e., n^, is a unique equilibrium state of ^ with respect to a. This n^ is
ergodic (with respect to 9) and is strong-mixing in the following sense:

476 Liu

for all n e Z +. Define

and let M ( Q x Z A , a) denote the set of ©-invariant probability measures
on QxLA which have marginal P on Q. For (te~#(Qx£A,cr), let / /m ,
w&Q denote the conditional measures of u on {w} x2Tx , which is iden-
tified with LA, caeQ. Then, according to refs. 7 and 10, we have the follow-
ing results. If there exists NeN such that AN>0 (i.e., AN has no zero
entries), then for each equi-Holder continuous i / / e L l ( Q , C(EA}), there
exists a unique //^ e JI(Q xLA,a) such that



Denoting by L2
A(n^) the collection of all families £= (£m: ZA -> R} ra6n

which are such that (a>, a)H->£ ro(a) is measurable and (we L2((//0)<J for
P-a.e. co, then for any £, r } € L \ ( n ^ } one has

for all me N and all aeZ1^, where $ is a one-sided function [i.e., for each
&>> ^ro(a) = $m(b) whenever ai = bi for all i^0] cohomologous to i/>
[namely, there exist ueL\Q,C(LA}) and ceLl(Q, P) such that
$ = i/' + « — w "0 + r], /l(w) are random eigenvalues corresponding to ^
given by Theorem 2.3 of ref. 10 (which is a random version of Ruelle's
transfer operator theorem) and they satisfy j log A(u>) d P ( w ) = na(^).

2.3. Existence and Uniqueness of Equilibrium States

Let LA(Q, C(X}) be as introduced in Section 2.1. A function
(peLA(Q, C(X)) is called equi-Holder continuous if there exist constants
C>0 and fl>0 such that for P-a.e. co one has \(p<0(x)-<pia(y)\ <Cd(.\, y)°
for any x, yeA^ The main result of this section is the following

Theorem 2.1. Let A0 be a C1 Axiom A basic set of/and let #(/)
be an open neighborhood off in Emb'(O, A/). If •?/(/) is given sufficiently
small, then the corresponding bundle RDS & over (£?, ̂ (i2), P, r) has the
following properties: For every equi-Holder continuous function </> e
L1

A(Q, C(X}), there exists a unique equilibrium state, written n^, of q> with
respect to <8. Furthermore, ^v is ergodic; and it is strong-mixing in the
sense described in Section 2.2 \ff{A is topologically mixing.

Proof. Let U0,
 Jtt0(f), p0, C0, and a0 be as introduced in Lemma 1.2.

Let now #(/) be an open neighborhood of/ in Emb'(O, M) with
<#(/) c %(/) such that Theorem 1.1 holds true for •#(/) with /itu c C/0 and
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[One can define such a strong-mixing property for the bundle RDS (#, ft)
described in the last subsection in a similar way (replacing LA with A(w).]
Another main property of /^ is that it is the thermodynamic limit of so-
called Gibbs distributions on finite sequence spaces. Its conditional
measures (,«,/,)„, weQ (called sample Gibbs states), have the following
Gibbs property: There exist C1, C2 > 0 such that for P-a.e. co



for all neZ + , that is, (p* is equi-Holder continuous.
We will assume that f\A is topologically mixing. Extension of the

theorem to the general case is standard by the spectral decomposition
theorem. Then a: ZA -> EA is also topologically mixing, or equivalently,
there is N>0 such that AN>0. According to Section 2.2, there exists a
unique equilibrium state, written U, e M(Q x ZAt <r), of q>* with respect to
a. This Hy* is ergodic and strong-mixing, and its conditional measures
(l*v*)<o on {w} X A have the Gibbs property (2.3). We now prove that
/V(77-'zl) = 0. Put Ds = n~\ds@] and Du = n-l(d"@). They are closed
subsets of EA, each smaller than LA, and aD s <=D s , a - 1 D u c D u . Since Uv»
is ©-invariant and ergodic, one has
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d(hm, id) <p0/3 for all weQ [remember that Q :=]!-" U(f) when '#(/)
is given].

Let ^ be a Markov partition for (f, /I0) of diameter at most p0/3, as
constructed in Bowen, ref. 8, Section 3.C. Let the transition matrix A of
(f, R) and the map n:EA-*AQ be as defined in ref. 8, Section 3.D. Let
a: ZA -> ZA be the subshift of finite type corresponding to A.

Now let 0 be the bundle RDS over (i2, J(i2), P, T) corresponding to
U ( f ) . Define

By the properties of TT and Theorem 1.1, 77 is a surjective continuous map,
IJ°0 = G°IJ, and 77 is one-to-one over the set A\d, where A = IJroefl
{w} x[h m Uyez/7(5^ud"^)] and ds®\jd"3l is the boundary of ^ as
defined in ref. 8.

Now let <pe L1
A(Q, C(X)) be an equi-Holder continuous function with

Holder exponent 6>Q and constant C>0. Define <p* = <p°n. Clearly
q>*eLl(Q,C(ZA)). Write (p* = (<p*e C(LA)}mea. Then, by Lemma 1.2,
for P-a.e. w one has

Noting that the complement of Ds in ZA is a nonempty open set, by
(2.3) we know that £A\DS has positive (nv*)m measure for P-a.e. co
and hence ^^.(^x DJ = 0. Similarly one gets /u^(QxDu) = 0. This
proves nv,(n-lA) = 0 since n~lA = [j^0n[Qx(Ds^Du)~\. Now let
fi<p = n*fiv,, i.e., n<p(E)=nv,(n-^E) for Ee@(A). Then //^ is clearly



3. EQUILIBRIUM STATE OF <p=<p<">

3.1. Existence and Uniqueness of Equilibrium State of <p= <p(u)

In this section we will assume that A0 is an Axiom A basic set
of feEmb2(0, M) and U(f) will be an open neighborhood of / in
Emb2(O, M). Fix arbitrarily A e ( A 0 , 1) and ye(0 , y0) and, corre-
spondingly, let U(f) be given so that Proposition 1.3 holds true. For we Q
and xe Aw, define

(G-invariant and its projection on Q is P, hence it is an invariant measure
of the bundle RDS G, i.e., ̂ ^e,///(/!, #). Since 77 is an isomorphism
between the two bundle RDSs (a,/*v,) and (#, /<^), we have /^ .("') =
hM ('$}. (See Bogenschutz(6) for the definition of isomorphisms between
bundle RDSs and for the related results.) So
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Note that for any ii.tJt(A,<3) there is v < t . M ( Q *LA, a) such that
FI*V = H. (This is a well-known fact in the deterministic case. See ref. 8,
Lemma 4.3, and we refer the reader to, for instance, Rudin, ref. 18, p. 112,
for a proof of the Hahn Banach theorem suitable for the modification. The
proof for the random case is similar by using the corresponding facts
presented in ref. 7.) This fact together with the variational principle implies
that na((p*}fin<s(<p) [this result can also be proved by arguments similar
to the proof of ref. 8, Proposition 2.13, together with our (2.1)] and hence
Hv is an equilibrium state of q> by (2.4). Moreover, by this fact together
with (2.4) and Section 2.2 one easily sees that any equilibrium state of q>
must be IJ*/uv. and hence nv. nv is ergodic and strong-mixing because the
bundle RDSs CS,nv) and (a,/^.J are isomorphic. |

By Proposition 1.3 (3), <p(u) := {y^eQAj} eL\(Q, C(X)) and is equi-
Holder continuous. Thus, by Theorem 2.1, there is a unique equilibrium
state, written ^w, of (p(u) with respect to the bundle RDS #. n^w is
ergodic, and it is moreover strong-mixing if fL0 is topologically mixing.

Note that for U e M e ( A , G ) , by the Oseledec multiplicative ergodic
theorem,



So uvw is the unique element of M e(A, G] such that

and by m( •) we will denote the Lebesque measure of M. Since we do not
assume that A0 is an attractor of f, some points will escape from VTkw

under actions of gk
w when U(f) and Vw are sufficiently small. Concerning

the escape rate we have the following result when Vm is taken to be an
r-neighborhood of Aw, i.e.,
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We will call M the generalized SRB measure of the bundle RDS G. We
also remark that, by Ruelle's inequality,(2) one has

3.2. Escape Rate of G from Neighborhoods of Aw

In this subsection we keep the conditions of the last subsection. Here
we consider the relationship between pressure n#((pM) and escape rate of
^ from neighborhoods of the random hyperbolic invariant sets Aw. Given
a small neighborhood Vm of Am for each ateQ, we define for n ^ 0

We will write

Proposition 3.1. There exist an open neighborhood U(f) of f in
Emb2(O, M) and a corresponding number r 0 >0 such that for any
0 < r ̂  r0



This result was given by Ruelle(21) for the deterministic case, and such
neighborhoods U exist when U(f) is sufficiently small.

In the rest of this subsection we address to the proof of Proposi-
tion 3.1. We first present two preliminary lemmas. For coeQ, xeAW: e>0,
and n ̂  0, put
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Remark 3.2. Under the conditions of Proposition 3.1, if U is an
open neighborhood of A0 such that

for all a>eQ, then one has

where

and if, moreover, for some small £ > 0 there holds

for all u>eQ, then

Lemma 3.3 (Volume lemma). There exists an open neighborhood
U(f) of f in Emb2(O, M) which has the following property: For small e > 0
there is a constant Ce > 0 such that

for all co e Q, x e Aw, and n ̂  0.

The proof of the lemma is given in the Appendix.

Lemma 3.4. One can find a neighborhood W of A0 with W^ O, a
neighborhood 'V(f) of f in Cl(O, M), and numbers a*>0 and L*>0



such that, if 0 < < x < a * and ft>e]~I-S ^ ( f )> then any a-pseudo-orbit of co
that lies in W can be L*a-traced by an orbit of co.

The proof of the lemma is almost the same as that of Proposition 2.6
of ref. 12.

Proof of Proposition 3.1. First let U(f) be as given in Lemma 3.3
and fix arbitrarily small s > 0. Let u>eQ. Put, for n ̂  0,

and by Lemma 3.3

and the term on the left-hand side of the above inclusion is a disjoint
union. So, by Lemma 3.3,
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For small <5>0, let Fw,n,s be a maximal (w, n, 8)-separated subset of Aw_
Clearly

On the other hand, for S^s one has

This together with Section 2.1 proves

Now, by Lemma 3.4, one can shrink U(f) (if necessary) and find some
number 0<r 0 <a* so that (3.1) holds true for all 0<e<£*r 0 and

for all weQ, n^O, and 0<r^r0. Then the desired conclusion follows
from (3.1). |



3.3. Random Perturbations of Hyperbolic Attractors

In this subsection we assume that A0 is a hyperbolic at tractor of
feEmb2(O, M), i.e., A0 is an Axiom A basic set of f and there exists an
open neighborhood U of A0 such that f U c U and r\n»of"U= ^o- Such a
neighborhood U is called a basin of attraction of A0. If an open
neighborhood U(f) of f in Emb2(O, M) is given sufficiently small, defining
the unstable manifold of the corresponding bundle RDS G at (w, x)eA as

for all (ca,x)eA. In this case, a measure fte^(A,$) is called an SRB
measure of ^ [over (Q, 3i(Q), P, T)] if its conditional measures on the
unstable manifolds are absolutely continuous with respect to the Lebesgue
measures on these submanifolds (see ref. 13, Chapter VII or ref. 3 for a
more precise definition). Given r>0, put
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then W(u, x) is the image of R*« (ku = dim Eu) under an injective immer-
sion of class C1.1 and

A family of functions (p = {<?„: B(Aa, r) ^R}weQ is said to be eauicon-
tinuous if for any given e > 0 there exists d > 0 such that x, ye B(Am, r) with
d(x, y)<d implies \(pia(x)~(plo(y)\ <e for all weQ. By <Fl(BA_r) we will
denote the set of all equicontinuous families <p = {<pM: B(A<a,r)^E]wsa

which are such that (ca, x)i—xp0j(x) is measurable on BAr and
\ ||<pj| dP(a>)< + 00, where \\<pw\\ :=sup^6£(yl(o)r) \<pm(y)\.

Our main result of this subsection is the following:

Theorem 3.5. Assume that A0 is a hyperbolic attractor of f e
Emb2(O, M). If an open neighborhood U(f) of f in Emb2(O, M) is
given sufficiently small, and correspondingly let the bundle RDS ^
over (Q, H(Q}, P, r) be as introduced before, then there exists a unique
HeJt(A, ^) which is characterized by each of the following properties:

(1) U is an SRB measure of G.

(2) h^} = J/(ft», x) dp, where x(ia, x) is the sum of positive
Lyapunov exponents of G at (w, x) e A.

(3) U, is an equilibrium state of (pM with respect to G.
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This n is ergodic, and it is strong-mixing if, moreover, f\ AO is topologi-
cally mixing. Furthermore, it has the following genericity property: There
exists r>0 such that for any (p€^l(BAir) one has

for P x m-a.e. (a>, y) e BA r.

Remark 3.6. Results similar to Theorem 3.5 above were earlier
proved by Young(25) through a different approach. See also Kiffer(11) for a
stochastic stability treatment of the related topic.

In order to prove the theorem, we first collect some facts concerning
stable and unstable manifolds of the bundle RDS G in the following lemma.
The proof of these facts goes along standard lines and is omitted here [ see
ref. 13, Chapters III and VII, for a reference, and keep (A.1) of the
Appendix of this paper in mind ].

Lemma 3.7. Let A0 be as given in Theorem 3.5. Then there exists
an open neighborhood U(f) of f in Emb2(O, M) together with numbers
a > 0, K> 0, and 0 < A < 1 such that the following hold true:

(1) For each 0 < 8 ^ a there exists a continuous family of C1 embed-
ded A^-dimensional (ks = dim Es) disks { W s

d (w , x ) } ( f 0 < x ) e A which has the
following properties for each (w, x) e A:

(i) W* s (w,x ) = e x p x G r a p h ( h s
( w , X ) \ ( f l s E - i a x ) : l f l < s } ) , where

is a C1,1 map with Lip(hs
(to>x)) ^ 1/2.

(ii) g0(co) W*s(co, x) c Ws
s(G((o, A-)).

(iii) dig^x, g"my) ̂  A" d(x, y) for all y e W^to, x) and all n>0.

(iv) {y e M: dig^x, g^y) ^ S/K, n > 0} cz W%<o, x).

(2) The obvious counterpart of (1) for local unstable manifolds
{ Wu

s(o>, x ) } ( ( 0 i X ) e A holds true. Moreover, Wu
d((o, x )<=/!„ for all (u>,x)€A.

(3) For each 0 < < 5 < a , the family of C1 embedded disks
{ Wg(o>, z)}zew"(o>,x) is absolutely continuous (see ref. 13, Chapter VII, for
the definition) and (jzeW"(lo,x) Ws

s((a,z) is a neighborhood of x.

Proof of Theorem 3.5. The equivalence of (1) and (2) is proved in
ref. 3. By Theorem 2.1, in order to prove the first part of the theorem, it is
sufficient to show n^((p(u)} = 0 when ^(/) is sufficiently small.



This proves the conclusions of Theorem 3.5, except for the last assertion.
Define r = p/4. Since U is ergodic and it is an SRB measure, the last conclu-
sion follows from the Birkhoff ergodic theorem and Lemma 3.6 together
with the fact B(Aw , r) c W*a(AJ for all coe Q (see ref. 25 or ref. 13, Chapter
VII, for a detailed proof). |

Remark 3.8. The arguments in Sections 2 and 3 exhibit some
applications of structural stability theory to the ergodic theory of bundle
RDSs arising from random diffeomorphism-type perturbations of Axiom A
basic sets. It seems that the structural stability results presented in Section
1 could also have some applications to the dimension theory of such
bundle RDSs. For example, let the bundle RDS <& be as introduced in the
conditions of Section 3.1 and let {h(0}we(i be the corresponding family of
conjugacy homeomorphisms. If ^0 is a Markov partition of A0, then
@a> : = ^«^o is a random Markov partition of Am and this gives a nice
measurable partition M := {{a>} x Rw: RM e 3tm, caeQ} of A. Moreover, by
Theorem 1.1 and Lemma 3.7, hm preserves stable and unstable manifolds,
i.e., hm( W(f, x) n A0) = W(a>, h^x) r\Am, a = s,u, xeA0 for each co 6 Q
when <%(f) is small. Though it is possible to prove a version of the
Eckmann-Ruelle conjecture(4) for general RDSs, the technical details
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First let U(f) be given so that Proposition 3.1 and Lemma 3.6 hold
true. Let r0 be the corresponding number given by Proposition 3.1. We
may assume that the number a given by Lemma 3.6 satisfies 2a s% r0 and
B(A0, 2a)c U0, where U0 is given by Proposition 1.3.

For 0 < 8 ̂  a and co e Q, put WS
S(AJ = (JxeAa Ws

s((o, x). If we denote
(-,/./>/»•••) by u>0, then A0)o = A0. Since W'a/6K(A0) is a neighborhood
of A0, there exists 0<p<a/3K such that B(A0,p)^Ws

a/6K(A0). Now
choose 0<e</)/4 and shrink ^(/), if necessary, such that Proposition 1.3
holds true for the e>0 given above. Then, by Proposition 1.3 and Lemma
3.6, one has

for all caeQ. By Proposition 3.1, one has



would be very complicated. However, by means of the partition 3ft. intro-
duced above, it is plausible that one could generalize the conjecture to our
present bundle RDS ^ with a substantially simpler proof. [The Eckmann-
Ruelle conjecture says in the case of ^ that, for each /i € Me(A, <3), almost
all its sample measures jum are exact dimensional and their pointwise
dimension is equal to the sum of their stable and unstable pointwise dimen-
sions.] In the 2-dimensional case, it is also plausible to generalize
Manning's(14) result to the case of G by making use of the same parti-
tion R.

APPENDIX

Proof of Lemma 3.3. We follow the main idea of Section 3 of Qian
and Zhang,(17) where a similar result is proved for a deterministic
endomorphism by adapting Bowen and Ruelle's(9) original idea to that
case. For our present case it is more convenient to avoid the use of local
stable and unstable manifolds.

Now let U(f) be an open neighborhood of f in Emb2(O, M) which
has the following properties:

(i) Proposition 1.5 holds true for U ( f ) and for some given
le (A0 , 1) and ye(0 , y0). This implies that there exists a constant K = K(y)
such that for any £ e EA, £ = <f + £« e E\ © E"A
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(ii) There exist r0 > 0, A0 ^ 1 such that for any ( w , x ) e A

are well defined,

and

where the Lipschitz constants are taken with respect to | • |.



Let ku = dim Eu and A l =4k u (2A 0 ) k u . Fix arbitrarily £ 0 >0 so that
£ 0 < m i n { ± ( l - A ) , ^A"1-1)} and (A+ £<,)-1 -e0> 1. Define U = (A+ 2e0)
[(A + eor'-eo]"1^. Fix arbitrarily <50e(0, 1) so that e~2S°<\-S0.
Finally, choose r > 0 such that

and for any (co, x)e A

where R(a>tX) -=(g(m,x}-T0g(l0tX)) {ieTxM:\f\^r}> R(a>,x} is defined analo-
gously, and the Lipschitz constants are taken with respect to the norm | • |.

Define for co e £2, x e A^, and n ̂  0

822/90/1-2-32
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where gk
(m,x) : = £G*-v,*>° "• ° £(<»,*)• Now we give some conclusions

(claims).

Claim A. 1. If £ e Dm(x, n, r), then

for k = 0, 1,..., n, where a = ( A - 1 — e 0 ) - 1 .

The proof of this claim is the same as that of Lemma 1.2.
Let coeQ, xeAm and £e TXM with |£| ^r. Assume that V is a sub-

space of TXM with V®E s
( w , x) = TXM and let Lv: E

u
(w, x) -> Es

(w, x) be the
linear map such that K=Graph(L^). Write 0 0 ( V ) = \LV\ and 0 k(£, , V) =
00(Tfg

k
((0,X)Y), k>0, if they are well defined.

Claim A.2. If 00( V) ^ 1, then 6>,(^ V) is well defined and

This claim follows from (A.2)-(A.4) and the standard techniques of graph
transformation (see, for instance, ref. 13, Proposition VII.2.1).

Claim A.3. lf 0 0 ( V ) ^ A r - 1 <50, then

The proof of this claim is the same as that of ref. 17, Lemma 3.4.



Using Claims A.1-A.3, one can prove the following by a simple com-
putation.

Claim A.4. There exists a constant A2 > 0 such that for all (co, x) e A
and n ̂  0
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if E, e D^x, n, r) and 00( V)< A l
 l S0. With other things being fixed, A2 can

be taken arbitrarily close to 1 when r and 00( V) are sufficiently small.
By standard techniques of graph transformation (see, for instance,

ref. 12) together with Claim A.2 one can prove the following:

Claim A.5. Let 0<p^r/2 be given. For (co,x)eA, define
B(m,x](p) = B^x)(p)xB^x)(p), where B ^ < w , X } ( p ) = {^eE^xy \t\<p},
a = s,u. Ifh: B»((0tX)(p) -+B*(f0tX)(p) is a C1 map with L ip fAX^f 1 d0, then
there is a C1 map k: B"G(m_x)(p) -> Bs

G(ia_x)(p) with Up(k)^A^lS0 such
that

In view of (A.I), there is the following:

Claim A.6. Let Q<p^ r/2. There is a constant Kp > 0 such that for
all (co, x)eA one has

if h:B"(0]tX)(p)^Bs
(0):X)(p) is a C1 map with Lipi/i)^^!-1 <50, where mXth

denotes the Lebesque measure on Graph(h) induced by its inherited
Riemannian metric as a submanifold of TXM (associated with the original
Riemannian scalar product).

Now let 0<p^r/2 be given. Fix arbitrarily (co,x)eA and n^0.
Define for £ ' s B ^ x ) ( p )

By Claim A.5, g^^q^.Ai,/?) is the graph of a C1 map /i{,,B: 5^ ( ( 0 > x ) (p]
-^•Bs

Ga(t0tX)(p) with Lip(/! i« iM)<^1~1 <?<)• Hence, by Claim A.6,
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where h f , i 0 : B"(ta<x)(p) -> B*((0iX](p), r/"^^. This together with Claim A.4
implies that

Therefore, writing Nm(x,n, p) = { £ e E ( a ) t X } : \\gk
(m-x^\\ <p, k = 0,...,n}, one

has by the Fubini theorem

since N(0(x,n,p) = \Jf,eBi (p)C(£s,n, p), where m x ( . ) denotes the
Lebesgue measure on Tx M associated with the Riemannian scalar product
and C'p is a number depending only on U(f) and p.

Let 0 < e < r/2K. We obtain the conclusion of Lemma 3.3 by

for all (w, x)e A and n ̂  0. |

In a similar way one can prove the following:

Lemma A.1. (Second volume lemma). There exists an open neigh-
borhood U(f) of f in Emb2(O, M) which has the following property: For
small e, S > 0 there is a constant Ce s > 0 such that

whenever weQ, xeAm, n ̂  0, and y e Bm(x, n, e).
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